EE493 ENGINEERING DESIGN-1

Test and Measurement Techniques

Outline

- Test and Measurement
- Measurement
 - What is Measurement?
 - Measurement Reliability
- Test Plan
 - Test Plan Examples
- Some tests recommended for EE493-EE494

Test and Measurement

- Measurement: The act of measuring something
 - Current
 - Voltage
 - Speed
 - Weight

- Test: A procedure intended to establish
 - Quality
 - Performance
 - Reliability

Test can be a combination of various measurements.

Measurement

- Measurement is
 - <u>Systematic</u>
 - <u>Replicable</u>

by which objects or events are quantified.

- <u>Usually</u> achieved by the assignment of <u>numerical</u> values.
 - International System of Units (SI)
- Measurement is more than reporting whether something is simply
 - Working or
 - Not working

International System of Units (SI)

Base Units

Quantity	SI unit	Symbol	
Length	meter	m	
Mass	kilogram	kg	
Time	second	S	
Electric current	ampere	А	
Temperature	kelvin or degree Celsius	K or °C	
Luminous intensity	candela	cd	
Amount of substance	mole	mol	

International System of Units (SI)-2

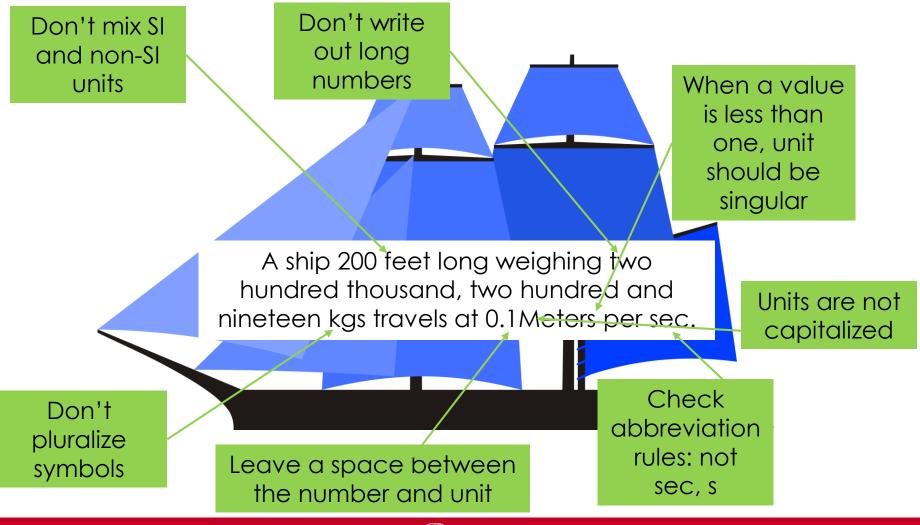
Derived Unit Examples

Quantity	SI unit	Symbol
Area	square meter n	
Volume	cubic meter	m ³
Speed	meter per second	ms ⁻¹ or m/s
Acceleration	meter per second per second	ms ⁻² or m/s ²
Force	newton	Ν
Energy	joule	J
Power	watt W	

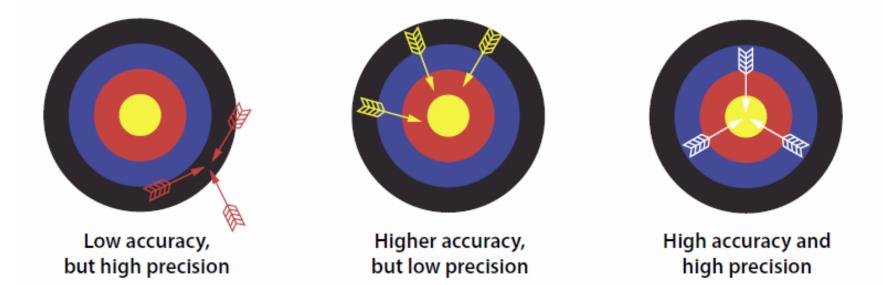
What about Volt?

Voltage is W/A or J/C which equals to kg.m².s⁻³.A⁻¹

Prefixes Used for Multiples of Units


Prefix	Symbol	Power of 10	
yotta	Y	1024	
zetta	Z	1021	
exa	E	10 ¹⁸	
peta	Р	10 ¹⁵	
tera	Т	1012	
giga	G	109	
mega	М	106	
kilo	k	10 ³	
deci	d	10-1	
centi	С	10-2	
Milli	m	10-3	
micro	μ	10-6	
nano	n	10-9	
pico	р	10-12	
femto	f	10-15	
atto	a	10-18	
zepto	Z	10-21	
yocto	У	10-24	

METU Electrical & Electronics Engineering Department



Expressing Measurement Results

In the example below the most important rules are broken!

Quality of the Measurement

- In order to get high accuracy and precision,
- You need to have your measurement system calibrated
- You need to calculate (and possibly reduce) your error margin

Measurement Reliability

- Measurement yields consistent scores over <u>repeated</u> measurements.
- Three criteria for reliability
- Test-Retest Reliability

Measure the same item, do you get the same result?

You need to repeat measurement and take average

Inter-item Reliability

Measure a different item, using the same setup, do you get the same result? This will show you the process variation

• Inter-observer Reliability

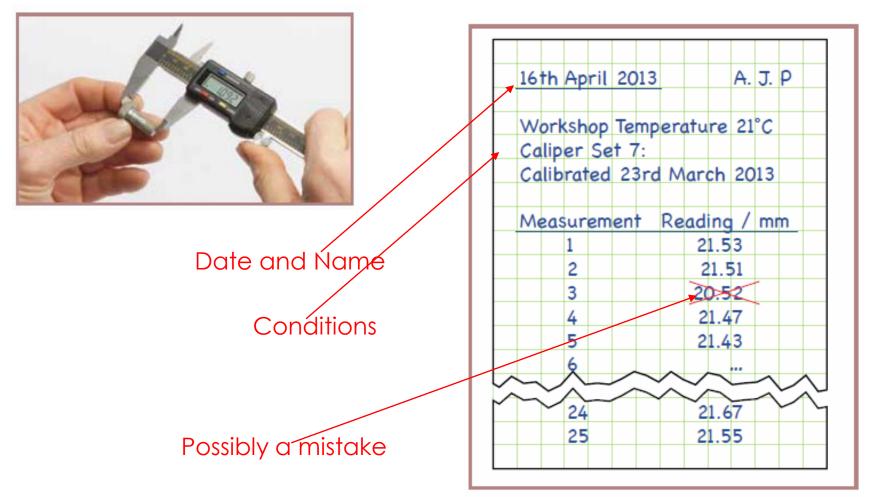
Let someone to measure it for you, do you get the same result? You need to have a <u>test-plan.</u>

Test-Retest Reliability

- Variation in test-retest can be due to
 - Noise
 - Unreliable measurement technique or setup
 - Change in the environment or conditions
 - Faulty parts

Inter-item Reliability

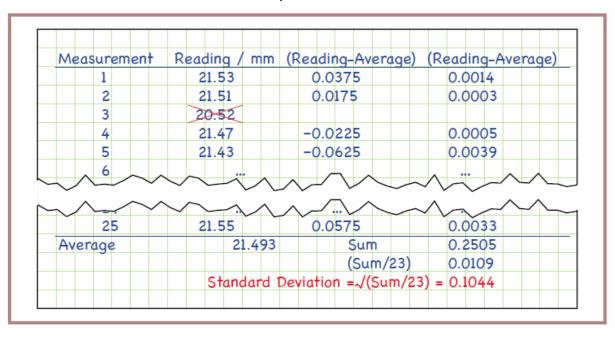
- Variation can be due to
 - Part to part variation
 - Check the data-sheet to confirm
 - Testing method and testing system problems


Inter-Observer Reliability

- Variation can be due to
 - Part to part variation
 - Check the data-sheet to confirm
 - Testing method and testing system problems

Uncertainty Analysis-1

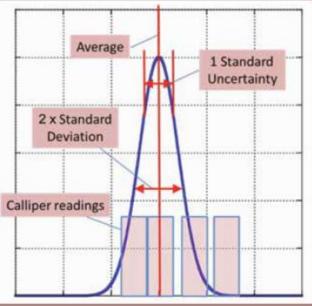
• Measuring the length of an object with an electronic callipers



Uncertainty Analysis-2

- Take the average of all measurements (21.53+21.51+21.47+21.43+...)/24=21.493 mm
- Calculate standard deviation as

standard deviation =


$$\frac{\sum_{i=1}^{n} (reading_i - average)^2}{n-1}$$

Uncertainty Analysis-3

- If you take 100 more measurements you will improve your confidence level.
- For n readings standard uncertainty is given as standard uncertainty = $\frac{standard \ deviation}{\sqrt{n}}$
- For 24 measurements the standard uncertainty would be 0.021 mm.

METU Electrical & Electronics Engineering Department

Test Plan

- Strategy document to verify a system meets its specifications
 - Must test the limits
 - Not used to verify your design in your design comfort zone
- Must Include
 - Detailed test methodology
 - Number of samples to be tested
 - The variation to be applied (e.g., temperature, supply voltage)
 - Expected results

Test Plan Example

Test Description: Switching Time: Test#4

			# Samples	5
Test Type	Test Conditions	Room	+ 85 ° C	-45 ° C
Switching Time	Vdd = 5.0 V	5	3	3
	 Use Tune-1 board Measure from RFIN to RFOUT Measure from minimum atten to Maximum attenuation case in parallel mode. Switching period 100uS Duty cycle 50% RF input power TBD 			

Test Setup(s)

(TTL level, Vlow=0.8V, Vhigh=2V). Measure from 50% control to 90% RF.(Trise) Measure from 50% control to 10% RF (Tfall) Calibration Method: Standard

METU Electrical & Electronics Engineering Department

Test Plan Examples 'ctnd

Test Results

Store in separate sub-directories by Serial No./Temp/Voltage. Make sure file names are consistent from directory to directory.

Expected Results

Rise Time and Fall Time is expected around 1uS.

Due Date	
Approved	
Priority	

Some Tests Recommended for EE493-EE494

METU Electrical & Electronics Engineering Department

Some Common Subsystems

- Object Detection Subsystem
 - Ex: Image processing, sensors, micro-computer, etc.
- Movement Subsystem
 - Motors, motor drivers, wheels, chassis, microcontrollers, etc.
- Holding and Dropping Subsystem
 - Motors, motors drivers, wheels, arms, microcontrollers, etc.
- Power Supply
 - Battery, power controllers, low power indicators, etc.

Important Remarks

- All of the components must be tested separately and they must be combined for overall testing.
- Measure of success must be defined
 - Ex: The object detection subsystem must not be affected by lighting conditions.
- Test results must be provided to verify the measurable objectives.
- Number of trials and statistical properties such as mean and stdev. must be given.

Example: Distance Sensor

- Any applicable test to provide the following:
 - Plots, tabulated data or measurement results showing measured distance (cm) vs real distance (cm) with error values in percentage.

Example: Our sensor measures the distance of objects that are about 30 cm away. It has a 50% detection error over 30 cm distance. Under controlled lighting conditions (florescent light with uniform lighting) our result has 60% accuracy over the same distance. These data are collected over 5 repeated measurements with direct line of sight.

This claim should be supported by measurement results on a plot or in a table.

Example: Motor, Motor Driver, and Controller

- For the operating voltage range, the current ratings must be measured; durability tests must be performed by applying high voltage in the operation range for enough time.
- In order to observe the accuracy of the movement of the robot, speed, deviation, and rotation tests must be applied.
- Hardware PWM outputs of the microcontroller with different duty cycles at different frequencies must be provided.

Example: Movement Subsystem

The robot must be checked whether it can travel without a • significant deviation through a linear path.

Test Results for the Final Product

The number of trials and the success rate must be provided. •

