Basic Image Processing Tools
for Robotics Applications

Elif Vural

EE 493, Fall 2018-2019

Middle East Technical University
Department of Electrical and Electronics Engineering

1



Outline

Part |

- Digital image representations
+ Object and pattern detection

- Image enhancement

Part Il

- 3D geometry and perspective correction

2 EE 493, METU, 2018



Image Representations

-+ Adigital image is an array of numbers.
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Color Spaces

Alternative color spaces can be preferred in different

applications:

+ YCbCr color space: Describe images in terms of luminance
and chrominance components
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- Often used in image and video
compression applications
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Color Spaces

- HSV color space: Describe images in terms of hue, saturation,
and value
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- Separates color information from intensity

= More robust to illumination changes than RGB in color-based
detection
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Object Detection

» Object detection: Search for what characterizes your

guery object in the image

»+ Search this in your image: ’

[pixabay.com]

- Color-based detection: “Look for a red object”

- Shape-based detection: “Look for a sphere”

+ Color & Shape -based detection: “Look for a red sphere”
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Color-Based Detection

- Color-based detection characterizes the query
object in terms of its color.

- Athreshold is applied.

- Example: To look for a red object

- R>200

- R>200 & G<100 & B<100

+ -60° < Hue <60
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Limitations of Color-Based Detection

» Color-based detection is easy to implement.
However, it has serious limitations!

- Uncontrolled background is easily confused with the object

- Appropriate value of the threshold depends a lot on the
illumination conditions

- Detection algorithm is quite vulnerable to noise, shadows, ...
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Color-Based Detection Example

- Problem: Detect the red frame surrounding the gadget

Detection with
R>200, B<180, G<180

Detection with
R>200, B<180, G<180

Under direct sunlight
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Detection result
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Shape-Based Detection

Problem: Look for a generic shape (rectangle, circle) in
your image

- A basic contour-based shape detection algorithm:

Find the contours in the image

Simplify the contours by reducing points
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[wikipedia.org]

Determine shape based on contour information:
3 vertices: Triangle

- 4 vertices: Rectangle
Many vertices + extra conditions: Circle
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Shape-Based Detection

» Open-CV implementation of the contour-based

shape detection algorithm is available:
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An Overview of Object Detection Techniques

- Color-based detection: Not robust to imaging conditions

- Shape-based detection: More reliable if you look for a
simple shape

- Techniques for objects with more complex shapes:
- Template matching
- Feature matching

- Customized detectors
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Object Detection with Template Matching

- Template matching:

- Convolve (correlate) the query pattern with the searched image

Query pattern
Searched image

Inspect the maximum value of the convolution
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Object Detection with Template Matching

" R

Query pattern: # V

- Advantages:
More reliable than color-based detection

Easy to implement (FFT-based implementations, Phase
Correlation method)

Limitations:
Geometric transformations (scale changes, rotations) lead to
errors
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Feature-Based Object Detection

- Features: Points of interest in an image that can be

repeatably detected

- Corner points, blob-like regions, ring-shaped regions ...
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Feature Detection Algorithms

Harris corner detector: Looks for corner-like points

where image gradients are high in both directions ‘
[Harris, 1988]

SIFT (Scale-Invariant Feature Transform): Looks for
ring-like structures [Lowe, 2004]

Several improvements in more recent feature detectors:
Faster operation, transformation-invariance,...

SURF, FAST, ORB, ...

17 EE 493, METU, 2018



Feature Descriptors

- A descriptor vector is assigned to each feature point.

- Describes the structure of the image around the feature

- Example: A common descriptor is Histogram-of-Gradients
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[Lowe, 2004] Histograms of
gradient directions
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Feature Matching

- Each feature is assigned a descriptor vector

Searched image

.1 Query pattern
]

]

- Comparing the descriptor vectors, the match of
each query feature is found in the searched image.
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Feature Matching

- Wrong matches are eliminated with an algorithm like RANSAC
[Fischler 1981].

- From the matched features, the query pattern is detected in
the searched image.

- The location of the sought object can be estimated.

[www.mathworks.com]

* Open-source implementations are available
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Customized Detectors

It may be possible to devise your own detector
based on the properties of the object you look for.

- Searched pattern: Develop an object
= detector based on edge
detection

Searched pattern: Develop an object

detector based on image
gradients

Examples: QR code scanners, barcode scanners, ...

- Bonus: The pattern may allow the inference of extra

information (orientation, distance, etc.)
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Image Enhancement

+ Due to lighting conditions, noise, etc. the captured

Image may undergo distortions.

» Common problems:

+ Low contrast (too dark or too bright image)
- Noise

- Blurred image

23 EE 493, METU, 2018



Contrast Stretching

Problem: The dynamic range of intensity levels in the
image is too limited.
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Contrast Stretching
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Histogram Equalization

- Problem: The pixels of the image have an undesired
intensity distribution (histogram)
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[www.eie.polyu.edu.hk/~enyhchan] [www.eie.polyu.edu.hk/~enyhchan]

Original image Histogram of original image

-+ Solution: Apply a transform that produces an image with
uniform intensity histogram
Transform: T, — Sk

r1,72,...: Gray levels of the original image I .

n1,MN2,...: Number of pixels with these gray levels 5 = i Z n.
- 1

N : Total number of pixels N —
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Histogram Equalization
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Equalized image Histogram of equalized image
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Median Filtering and Smoothing

Problem: The image is noisy

[www.eie.polyu.edu.hk/~enyhchan]

Spike noise White noise

- Solution: + Low-pass filtering

Decreases noise but blurs the image

Median filtering:

~or each pixel, sort the intensity value of the neighbors

Determine their median and assign it to output pixel
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Median Filtering and Smoothing

Median filtering
output

Low-pass filtering
output
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Image Sharpening

- Problem: Image is blurred

- Solution: Apply a high-pass filter and boost high-

frequency components oy

Example: 3x3 high-pass filter 4|1 & -

-1 -1 -1

a epEPT 1T

o
HLor

Blurred image High-pass component Enhanced image

30 EE 493, METU, 2018



Edge Detection

-+ Sharpening filters have interesting applications

- Directed derivative filters
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» Canny edge detector: Sobel operator + post-processing
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Part |: Conclusions

»+ Object detection

» Do not base your algorithm just on color detection!
» Use shape priors, pattern features
» Even design your pattern if you can

- Image enhancement: To improve the quality of your
iImage

» Histogram equalization

» Denoising
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3D Geometry and Perspective Correction

- Problem: When capturing a scene, how to relate observed
2D pixel coordinates to actual 3D coordinates?

Pixel coordinates
(X,y)

3D coordinates
(X,Y,Z2)="
Pixel distance
3D distance="?
..... V'.
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Relation Between 3D - 2D Coordinates

Pinhqje camera model:

/ Principal axis
C ‘ P Z
Principal point
Camera center

Image plane

Derive the 2D coordinates of the image of a 3D point:

“ X, Y, 2)
y The 3D point (X, ¥, Z) is
% mapped to the 2D point
| : X Y
C < P Z (ff’f?)

Image plane
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Pinhole Camera Model

3D point 2D projection Pixel coordinates

X Y X Y

Relation between 3D point and 2D point

i S S X
Y+Zp, | =10 f p, O 7
oz ] oo 1 o]

_ i _ [ x
Homogeneous i Jo 0 pe 0 Y
coordinates: ky | =10 J py O 7
' I k ] I 0O 0 1 0 ) |

L 1 LT -
X K X
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Pinhole Camera Model

- The camera frame is not necessarily aligned with the

Z

world frame y
Camera Z
frame >< X l/ y
World

> X
R, { frame
Pinhole camera model
x = |[K|0]X =g x = K|R|t|X
Under rotation and | !
translation Ly X
Y
X — [RIE)X || 7
- - 1
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s 3D Reconstruction Possible?

Pinhole camera model

X — K[R\t]X We cannot recover X from x in
b\ general. <&
 Lr | 3x4 matrix X
ki Not invertible! | Vv
L A
B i 1 | ?v

Camera center

Good news: We can recover X when we know that it is on
a planar surface! # -

A 4
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Model Under Planar Scene

- Planar scene assumption: Let us take Z=0

Pixel coordinates:

orld frame coordinates:

Y 0)
/'> ’t

7

Z=0
_ i} _ o - X
kx f 0 pg r11 Ti2 [ri3] tg v
ky — 0 f Py o1 T2 [ra3| iy 0
i IZC il i 0 O 1 1 L 31 732 733 tz i 1
- hiy his his | | X -
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Homographies

<« — HX - This relation is called a homography.
i Zaz ! 3 : 3]\—‘X -+ His a3x3 invertible matrix.
) 51/ - The 3D point X can be recovered

from its pixel coordinates!

—} How to correct the perspective distortion for planar points:

1. Compute the homography matrix from a set of known 3D
points on a plane and their pixel coordinates

2. Find the matrix H-

3. Given x in pixel coordinates, find the 3D point as X = H-1 x
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Computing the Homography

Pixel coordinates

World frame coordinate

kx| hir hie hag | [ X
(X1,Y1,0)
‘1. 1 . ky | = | haor has  has Y
o o ° -k | h31 hza |has| | | 1

* Taking /33=1 for normalization, the relation xi= H Xj gives

o h11X; + h12Y; + has ~ ho1 X + haaY; + hos

h31X; +hsY; +1 v h31X; + h3oY; + 1

* N such 2D-3D point matches gives 2N equations in unknowns
thi1, hig, bz, ..., hao}
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Computing the Homography

Form a linear equation system and solve for the
unknown homography parameters {hi1, hi2, h13,..., h3o}

- Warning: Too large pixel coordinates may cause

numerical instability!

» Normalize the coordinates to 0-mean and an average norm
of sqrt(2)

» Compute the homography parameters

» Undo the normalization
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Perspective Correction

Camera moves

* C=0 V)

Reference point Reference point

- Let the angle between the camera frame and the plane be fixed:

- Then even if the camera moves, through H' we can get the
relative coordinates (X, Y’, 0) with respect to the camera.
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Part Il: Conclusions

- Perspective correction problem:

Pixel coordinates
Q (X,y)
3D coordinates
(X,Y,2)="
‘Y

» Easy to do if the scene is planar and camera looks at
the scene from a constant angle (4=

A

» Learn a homography model!
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