
Embedded Software
Development

Assoc. Prof. Uluç Saranlı
Dept. of Computer Engineering

12/18/18 EE493-494 Capstone Design seminars 2

Embedded Systems

• What exactly is an “Embedded System”?
– Any device that contains one or more dedicated

computers, microprocessors, or microcontrollers

• Where can I find one?
– Everywhere!

home appliances

robotics aircrafts automotive

personal gadgetry

printers&copiers
toy industry

factory coordination

12/18/18 EE493-494 Capstone Design seminars 3

Embedded system: General structure

• Intense interaction with the external world
• Sensors convert physical quantities into electrical signals
• Microcontroller acquires data, processes it and issues

outputs
• Actuators convert output signals into physical work

Microcontroller

(uC)

sensor

Sensor conditioning

O
utput interfaces

actuator

indicator

sensor

sensor

12/18/18 EE493-494 Capstone Design seminars 4

Embedded Systems: Some Goals
• Small code size, fast execution

– Do not rely too much on external libraries
– Be careful on how much memory/computation is used

• Predictability of execution (determinism)
– Periodicity of sensor readings and actuator commands
– Finite and predictable "response time" to important events

• Software modularity
– Allows incremental development without breaking previous

components
– Allows teamwork

12/18/18 EE493-494 Capstone Design seminars 5

Relevant Microcontroller Features

• Ports: Used for digital and analog I/O

– Group of pins on a microcontroller which can be accessed
simultaneously (in parallel). Physically, simple registers.

• Interrupts
– Allows immediate response to external signals/events

• Timers/Counters
– Up/down counters connected to either the MCU clock or

external signals

• A/D Converters

– Allow converting an external voltage input to a digital value

Consult your MCU datasheet for ALL details

12/18/18 EE493-494 Capstone Design seminars 6

Some Recommendations

• Use Arduino/Google/StackOverflow/... responsibly,

they are useful but dangerous resources. Be an

ENGINEER, come up with your own solutions.

• DO NOT just copy/paste existing solutions without

understanding. If you do that, you will most likely get

stuck in your next step.

• If you are using Arduino, look inside its source code,

understand what it does. Otherwise, you will be

wasting LOTS of time chasing errors for which you

have no idea where they might be coming from.

• RTFM (i.e. the datasheet for your platform).

12/18/18 EE493-494 Capstone Design seminars 7

Basic Embedded I/O Programming

• Simplest form for embedded code is a simple loop,
called Round-Robin (or Cyclic Executive):

while (1) {
task_1();
...
task_n();

}
• Executes n tasks in sequence, within an infinite loop

that never exits.

• The Arduino library has this structure. Check out
/hardware/arduino/avr/cores/arduino/main.cpp

12/18/18 EE493-494 Capstone Design seminars 8

Basic Embedded I/O Programming
• Main entry point in the Arduino library:

int main(void) {
init(); // To be written by the user
setup(); // To be written by the user
for (;;) {

loop(); // To be written by the user
}
return 0;

}

12/18/18 EE493-494 Capstone Design seminars 9

Round-Robin Architecture

• Embedded software is often "event driven"

– An "external" event triggers software to respond (e.g. a

digital input went from 0 to 1)

– An action is taken, which might trigger additional events

– When no events are present, software simply waits,

possibly putting the CPU into sleep mode

• In the Round-Robin architecture

– Each task should "listen" to a specific set of events through

polling (i.e. explicit check with an if statement)

– When a task notices an event, it responds by doing

whatever is necessary, which might result in other events

12/18/18 EE493-494 Capstone Design seminars 10

Round-Robin example
• Simple example: Use a button to toggle an LED
• Goal: Write a program that will monitor a button

connected to Port B bit 0 and when it becomes true,
toggle an LED connected to Port B pin 1

• Two tasks:
– Button task: Monitor the button state
– LED task: Toggle the LED when the button tasks says so

Warning: Our examples here use the PIC
microcontroller. Principles are the same, details will
differ for other MCU choices. Read the datasheet.

12/18/18 EE493-494 Capstone Design seminars 11

Main Program
unsigned char toggle_flag; /* Tells led_task() to toggle LED */
unsigned char button_state; /* Remembers previous state of the button */

void init_system() {
toggle_flag = 0; /* Initialize global variables. */
button_state = 0;
TRISB = 0xFD; /* Pin 1 output, rest is input (for PIC)*/

}
void main() {

init_system();
while(1) { /* Here is the Round-Robin structure */

button_task();
led_task();

}
}

12/18/18 EE493-494 Capstone Design seminars 12

Button Task
void button_task() {

switch (button_state) {
case 0: /* Previous button state was 0 */

if (PORTB & 0x01 != 0) {
button_state = 1;
toggle_flag = 1;

}
break;

case 1: /* Previous button state was 1 */
if (PORTB & 0x01 == 0) button_state = 0;
break;

}
}

• Implements a "State Machine". More on this later.

12/18/18 EE493-494 Capstone Design seminars 13

LED Task
void led_task() {

if (toggle_flag != 0) {
PORTB = PORTB ^ 0x02;
toggle_flag = 0;

}
}

• Monitors the toggle flag, performs the requested
toggle if detected.

• Event sources in this design:
– Button connected to Port B (externally triggered)
– toggle_flag variable (inter-task communication)

12/18/18 EE493-494 Capstone Design seminars 14

Timeline of Events

• Nothing happens until the button is pressed. If
statements in both tasks are false

• When the button is pressed, the button task switches
to state 1, and alerts the LED task through the toggle
flag

• The LED task toggles the output and resets the flag.
• Once again, nothing happens until the next event,

which is the button release!
• When the button is released, the button task switches

to state 0, and starts waiting for another press.

12/18/18 EE493-494 Capstone Design seminars 15

Observations: State Machines
• The button task adopts what is called a "state

machine" structure. It remembers past events
through a carefully selected set of states,
implemented in a switch case statement

• This represents an internal state, that attempts to
track what the physical state of the button looks like

• State machines are essential to embedded software
design. Use them!

not pressed pressed

12/18/18 EE493-494 Capstone Design seminars 16

Observations: Button Behavior
• Normally, buttons do not behave this nicely. The

"bounce", generating multiple pulses

• Additional logic and states are needed in the button
task for "debouncing", which involves waiting for the
bounce to end.

12/18/18 EE493-494 Capstone Design seminars 17

Observations: Button Behavior
• For example, a debouncing button task might have a

more complex state machine:

• "Pressing" and "releasing" states should wait for a
short period for bouncing to end.

• WARNING: Waiting here does not mean another
while loop!

not pressed pressed

pressing

releasing

12/18/18 EE493-494 Capstone Design seminars 18

Avoiding Busy Waits
• Ideally, the only busy wait (i.e. waiting for something

to happen in a while loop) should be the while(1) in
main().

• All other waiting should take the form of counters, or
monitoring of timers (more on timers later)

void button_task() {
...
case PRESSING:

if (++wait_counter > DELAY_COUNT)
button_state = PRESSED;

break;
case PRESSED:

...
}

12/18/18 EE493-494 Capstone Design seminars 19

Avoiding Busy Waits

• Eliminating all busy waits except main() greatly helps
debugging
– When something is stuck, you know it's because no events

are received

– You can still use your debugger to single-step through all
tasks, inspecting their internal states

• Even when a single task is "stuck" in some undesired
state, remaining tasks will keep working

• This is similar to the difference between a
preemptible and a non-preemptible operating
system.

12/18/18 EE493-494 Capstone Design seminars 20

Round-Robin: Flaws

• Unpredictable execution

– In the worst case, a particular task needs to wait for all

others to finish before it can respond to an event

– Adding a new task changes all timing related

considerations: Task response is "coupled" to other tasks

• Solution: Use interrupts to quickly respond to

important external events

– Allows prioritizing certain events above others by allowing

immediate response by the Interrupt Service Routine (ISR)

– Adding new tasks does not effect the deployment of ISR

execution

12/18/18 EE493-494 Capstone Design seminars 21

Recall: Interrupts
• An interrupt is a (temporary) break in the flow of

execution of a program
– the CPU is said to be “interrupted”

• When an interrupt occurs, the CPU deals with the
interruption, then carries on where it was left off
– Program segment dealing with the interrupt is called the

"Interrupt Service Routine", ISR.
– ISR programmer should put the CPU back to its beginning

state before returning.

12/18/18 EE493-494 Capstone Design seminars 22

Basic Concepts of Interrupts
• Interrupts are (generally) used to overlap

computation & input/output tasks
– Rather than explicitly waiting for I/O to finish, the CPU can

attend other tasks
– Examples would be console I/O, printer output, and disk

accesses, all of which are slow processes

• Normally handled by the OS. Rarely coded by
programmers under Unix, Linux or Windows.
– In embedded and real-time systems, however, they are

part of the normal programming work.

12/18/18 EE493-494 Capstone Design seminars 23

Basic Concepts of Interrupts
• Why interrupts over polling? Because polling

– Ties up the CPU in one activity
– Uses cycles that could be used more effectively
– Code can’t be any faster than the tightest polling loop

• Bottom line: an interrupt is an asynchronous
subroutine call (triggered by a hardware event)
that saves both the return address and the
system status

– The main difference from a subroutine is that the main
routine is unaware that it has been interrupted.

12/18/18 EE493-494 Capstone Design seminars 24

Extending the Round-Robin Loop
• Round-Robin with Interrupts

– Keeps the same infinite loop structure
– Uses interrupts to respond to "asynchronous" events quickly,

informing tasks in the main loop

void interrupt event1_isr() { ... } // Depends on the MCU
void interrupt event2_isr() { ... } // Depends on the MCU

main() {
initialize();
while (1) {

task_1();
...
task_n();

}
}

12/18/18 EE493-494 Capstone Design seminars 25

Round-Robin with Interrupts
• Before, each task was explicitly polling for events

– If there are too many tasks, a short event might be
detected late, or even missed

– Multiple, successive occurrences of the same event might
go undetected

• Now, the ISR immediately responds to the event
– Performs all time-critical tasks to do
– Alerts the main routine through a flag or buffers for less

time-critical tasks

12/18/18 EE493-494 Capstone Design seminars 26

Simple Example with Interrupts
• Same as before: Use a button to toggle an LED
• Previous design:

– button_task monitors the button on Port B pin 0
– led_task controls the LED on Port B pin 1

• New design:
– RB0 pin is an external interrupt source (for the PIC MCU)!

We can detect the rising edge with an interrupt!
– So, replace the button_task with an ISR
– Keep the LED task as before

12/18/18 EE493-494 Capstone Design seminars 27

Simple Example with Interrupts
unsigned char toggle_flag;

void init_interrupts() {
/* Enable INT0 source */
INTCON = 0x10;

/* Once all configuration is done,
enable all interrupts */

INTCONbits.GIE = 1;
}
void init_ports() {

TRISB = 0xFD;
}
void main() {

toggle_flag = 0;
init_ports();
init_interrupts();
while(1) {

led_task();
}

}

void led_task() {

if (toggle_flag != 0) {
PORTB = PORTB ^ 0x02;
toggle_flag = 0;

}

}

void interrupt high_priority high_isr() {

/* Check flags to detect which source
triggered the interrupt

if (INTCONbits.INT0IF) {
/* Clear interrupt flag. */
INTCONbits.INT0IF = 0;

/* Inform LED task */
toggle_flag = 1;

}

}

12/18/18 EE493-494 Capstone Design seminars 28

More Complex Example

• Monitor a digital input on Port B pin 0, when it is pressed:

– read the 8 bit value from PORTC

– send it serially, one bit at a time from PORTD pin 0

– ensuring that there is at least 50ms between each bit.

• Simple possible solution:

main() {

unsigned char value, count;

initialize();

while (1) {

if (PORTB & 0x01 != 0) {

value = PORTC;

for (count = 0; count < 8; count++) {

if (value & (0x01 << count)) PORTD |= 0x01;

else PORTD &= 0xfe;

busy_wait(50);

} } }

}

12/18/18 EE493-494 Capstone Design seminars 29

Problems with the Simple Solution
• Continuously reading Port B pin 0 is problematic,

possibly triggering multiple reads of PORTC on one
button press
– That's easy, use state machines just like before

• What if Port B pin 0 is pressed again while we were
sending data on PORTD?
– That's why we need to avoid busy waits. They prevent

other parts of the code from running
– Also, if RB0 is pressed multiple times before we have a

chance to send all data, we need to buffer data!
• In any case, we better detect that RB0 is pressed

quickly and buffer the reading of PORTC

12/18/18 EE493-494 Capstone Design seminars 30

Studying The Problem

• Event sources:

– RB0 is pressed (external INT0 interrupt can be used)

– Sending of the current bit completed (i.e. 50ms elapsed)

– Sending of the current byte completed (all 8 bits done)

• An alternative design

– INT0 interrupt service routine reads PORTB and places the

data in a buffer (FIFO, ring buffer)

– send_task() monitors the buffer, starts sending when a new

byte arrives. We should use state machines for this.

– When a bit is written to PORTD, send_task() holds off for

50ms until the next bit.

• This is a typical use of round-robin with interrupts

12/18/18 EE493-494 Capstone Design seminars 31

Implementation
• Initialization and main
void init_interrupts() {

/* Do whatever it takes to initialize interrupts for your MCU */
}
void init_ports() {

TRISB = 0xFF; /* PORTB is all inputs */
TRISC = 0xFF; /* PORTC is all inputs */
TRISD = 0xFE; /* PORTD pin0 is an output */

}
main() {

init_ports();
init_interrupts();
INTCONbits.GIE = 1; /* Enable all interrupts

while (1) {
send_task();

}
}

12/18/18 EE493-494 Capstone Design seminars 32

Ring Buffers
• Useful for buffering incoming/outgoing data

#define BUFSIZE 16 /* Static buffer size. Maximum amount of data */
unsigned char buffer[BUFSIZE]; /* No malloc's in embedded code! */
unsigned char head = 0, tail = 0; /* head for pushing, tail for popping */

bool buf_isempty() { return (head == tail); }

void buf_push(unsigned char v) { /* Place new data in buffer */
buffer[head++] = v;
if (head == BUFSIZE) head = 0;
if (head == tail) { /* Overflow!!! */ error(); }

}

unsigned char buf_pop() { /* Retrieve data from buffer */
unsigned char v;
if (buf_isempty()) { /* Underflow!! */ error(); return 0; } else {

v = buffer[tail++];
if (tail == BUFSIZE) tail = 0;
return v;

}
}

12/18/18 EE493-494 Capstone Design seminars 33

External INT0 ISR
• Main function is to read PORTB and buffer data
void interrupt high_priority high_isr() {

unsigned char v;

if (INTCONbits.INT0IF) { /* Check flags to make identify source */

INTCONbits.INT0IF = 0; /* Clear interrupt flag */

v = PORTB; /* Read data */
buf_push(v); /* Push into buffer */

}
} /* Done! */

• The ISR is short! It performs only the most urgent
task, which is reading and storing data

12/18/18 EE493-494 Capstone Design seminars 34

Tasks for Sending Data
• Once again, use state machines
unsigned char send_state = 0;
void send_task() {

unsigned char sending, send_count;
switch (send_state) {
case 0: /* Wait for new data */

disable_int0(); /* IMPORTANT: Prevents corruption of buffer! */
if (!buf_isempty()) {

sending = buf_pop();
send_state = 1; send_count = 0; }

enable_int0(); /* Re-enable interrupts to resume operation */
break;

case 1: /* Send next bit */
if ((sending & (0x01 << send_count) != 0) PORTD = PORTD | 0x01;
else PORTD = PORTD & ~0x01;
send_count++; send_state = 2; break;

case 2: /* Skip until 50ms elapses */
if (time_since_laststate() < 50) break;
if (send_count == 8) { send_state = 0; break; }
send_state = 1; break;

}
}

wait for data sending bits

wait 50ms

12/18/18 EE493-494 Capstone Design seminars 35

Observations
• No busy waits at all!
• Button press on RB0 immediately results in reading

of data on PORTC
• 50ms waiting is accomplished by send_task() staying

in state 2 until 50ms elapses since last state
transition
– we can use timers for this, stay tuned...

• Ring buffers are extremely useful for communicating
between ISRs and tasks

• Data Sharing: Disabling/enabling interrupts in
send_task() to prevent buffer corruption

12/18/18 EE493-494 Capstone Design seminars 36

Counters/Timers

• All Microcontrollers include multiple timers and

counters that can be used in a variety of ways

• Physically, timers are registers continually increasing

(or decreasing) and then starting over following an

overflow

– 0, 1, 2, 3, 4 255, 0, 1, 2, 3, 4 etc.

• Their clock inputs can be chosen from a variety of

different options (depends on the MCU)

• !!! Timers and counters operate independently from

the microcontroller's program execution. No CPU

effort is required for their normal operation.

12/18/18 EE493-494 Capstone Design seminars 37

Application: Event Counters
• Timer/counter registers can usually be used as an

event counter.
– If the clock of this register is replaced by a signal coming

from an external event (this can be configured by using
methods specific to each MCU)

– We can obtain the number if times the event has occurred.
– For example, on the PIC microcontroller Timer 0, the clock

circuit looks like:

12/18/18 EE493-494 Capstone Design seminars 38

Event Counter Example

• A microcontroller monitoring the capacity of a parking
lot
– Whenever a car enters the lot, the counter is incremented

– When a car leaves, the counter is decremented
– When the count reaches the maximum number of cars

allowed for that lot, it can display a sign “Parking Lot Full”

• Also, digital clocks, traffic light controllers, timers in
microwave owens.

12/18/18 EE493-494 Capstone Design seminars 39

Timers

• A timer is a counter that is always enabled, with a

time-periodic input fed to the clock input

• It counts the number of cycles on its clock input

• Time is calculated by

– subtracting beginning count from the ending count and

– multiplying the difference by the clock period.

12/18/18 EE493-494 Capstone Design seminars 40

Observations
• Incrementation is done in the background by the

microcontroller hardware, not in software

• It is up to programmer to think up a way how (s)he
will take advantage of these tools for their needs.

• Example: Increasing some variable on each timer
overflow.
– If we know how much time a timer needs to make one

complete round, then multiplying the value of a variable by
that time will yield the total amount of elapsed time.

12/18/18 EE493-494 Capstone Design seminars 41

Timers/Event Counters
• Uses of Programmable Timers and Event Counters

– Count external events
– Generate event caused interrupts

– Generating real-time interrupts
– Outputting precisely timed signals
– Programmable baud rate generation
– Measuring time between events
– Measuring frequency of signals
– Generating waveforms (e.g. sound)
– Establishing a time base (multi tasking systems, sampling

systems, etc.)

12/18/18 EE493-494 Capstone Design seminars 42

Example 1: Tracking Motor Angle
• A typical application solved using an external input

clock and a timer is counting full turns of a motor
shaft.

• Let's attach four metal screws on the axis of a motor.

• Then place an inductive sensor at a distance of 5mm
from the head of a screw

12/18/18 EE493-494 Capstone Design seminars 43

Example 1: Setup
• The inductive sensor will generate a falling signal

edge every time the head of the screw is in front of
the sensor head.

• Each signal will represent one fourth of a full turn. We
would like the sum of all full turns to be found in the
timer register

• The main program can then easily read this data
from the timer register through the data bus.

12/18/18 EE493-494 Capstone Design seminars 44

Example 1: Connections

12/18/18 EE493-494 Capstone Design seminars 45

Example 1: Outline of the Software
• Required steps (probably valid for most

microcontrollers):
– Configure the clock input to the timer to come from the

external pin
– Configure the "prescaler" for the timer to choose how many

input pulses will cause an increment
– Configure the timer to generate an interrupt when the timer

"overflows"
– Use a round-robin with interrupts architecture to monitor

the timer value, which will keep track of how many rotations
the disk has gone through

12/18/18 EE493-494 Capstone Design seminars 46

Example 2: Periodic interrupt

• Universally used in all operating systems to establish

a consistent and reliable time basis

– Interrupt is generated periodically every, say, 1ms

– Updates a system clock (time-of-day)

– Invokes the OS scheduler to switch processes

– Performs any other tasks requiring periodicity

• Embedded software, particularly real-time systems,

almost always needs such a regular, reliable interrupt

as well

12/18/18 EE493-494 Capstone Design seminars 47

Example 2: Setup
• Goal: Generate an interrupt once every 10ms
• Oscillator frequency is 20MHz
• Which timer is appropriate?

– 20/4 = 5MHz system clock
– 10ms = 10000us = 50000 clock cycles

• Suppose we use Timer0 in 8-bit mode
– 1:128 prescaler yields 390.625 counts per 10ms, or

6.553ms between two overflows
– 1:256 prescaler yields 195.3125 counts per 10ms, or

13.1072ms between two overflows. Enough?
– Please consult the MCU datasheet for details. These are

for the PIC microcontroller

12/18/18 EE493-494 Capstone Design seminars 48

Example 2: Setup
• Idea:

– What if we start the timer value not from zero, but from an
initial value of our choice?

– The counter will then reach 255 and overflow earlier,
achieving a shorter period

• So, if we want to overflow after counting up by 195,
we need to preload the timer with 256-195=61
– This needs to be repeated after every overflow, preferably

as the very first instruction in the Timer0 ISR.
– This will still not yield exactly 10ms between two interrupts.

Why?

12/18/18 EE493-494 Capstone Design seminars 49

Example 2: Putting it together
• Initialization and main
void init_interrupts() {

RCONbits.IPEN = 0; /* Disable priorities */
INTCON = 0x20; /* Enable timer 0 interrupt(*/

}
void init_ports() {

TRISC = 0xFE; /* PORTC pin 0 is an output */
}
void init_timer() {

T0CON = 0xA0;
TMR0L = 0xB0; TMR0H = 0x3C; /* Is this ok? Any potential problems?*/

}
main() {

init_ports();
init_interrupts();
init_timer();
INTCONbits.GIE = 1; /* Enable all interrupts

while (1) {
}

}

12/18/18 EE493-494 Capstone Design seminars 50

Example 3: Variable delays
• Task:

Once every 10ms, output a 100us pulse, wait for 1ms,
output another 100us pulse, wait for 2ms and output
another 100us pulse

• Design:
– Use the Timer 0 to generate a periodic interrupt once every

10ms
– Use Timer 1 to implement a configurable delay. A main loop

task will setup Timer 1 and wait for a flag to be set by the
Timer 1 ISR.

12/18/18 EE493-494 Capstone Design seminars 51

Example 2: Putting it together
unsigned int cycle_count = 0;

void interrupt high_priority high_isr() {

if (INTCONbits.TMR0IF) { /* Check flags to make identify source */

INTCONbits.TMR0IF = 0; /* Clear interrupt flag */

TMR0L = 0xB0; TMR0H = 0x3C; /* Reload timer with initial value*/

cycle_count++;

LATC = LATC ^ 0x01; /* Toggle PORTC bit 0 */
}

} /* Done! */

12/18/18 EE493-494 Capstone Design seminars 52

Example 3: Variable delays

• Observations:

– Timer 0 and Timer 1 will run independently, without

affecting each other's operation

– Your ISR will need to handle both interrupts

void interrupt high_priority high_isr() {

if (INTCONbits.TMR0IF) Timer0_ISR();

if (PIR1bits.TMR1IF) Timer1_ISR();

}

– Utility function for configuring Timer1 and starting it.

void configure_delay(int ms); /* Sets up Timer1 for ms microseconds */

– You can stop Timer 1 when you no longer need the delay

T1CONbits.T1RUN = 0;

• Left as an exercise for your project :)

