ENGINEERING STATISTICS

Lale Alatan, Elif Vural (Based on previous talk by Sencer Koç)

Middle East Technical University Department of Electrical and Electronics Engineering Spring 2017-2018

Engineering System Analysis

- Use observations to qualitatively and quantitatively **understand** a system.
- Use mathematics to determine how a set of interconnected components behave in response to a given input

Questions

- 1. What is meant by "understanding a system"?
- Predict future outcomes from the system based on hypothetical inputs.
- 2. How to formalize this?
- By a model that maps input signals to output signals.

- 3. Why is this important?
- A system model is a key component in the systems engineering design cycle.

Systems Engineering Cycle

How not to solve a design problem

Models

- Model: A comprehensible simplified description of a real world system
- Engineering systems analysis:
 - Process of using observations to identify a model of a system
- Modeling a system:
 - Find correlations or patterns in the observed signals.

Statistical framework

- Measuring real signals is a statistical process:
 - Observed signals will be noisy
 - Noise must be included in the modeling process.
 - All modeling is inherently a statistical process.
 - Models of systems are uncertain approximations of the real world.
 - The modeling error itself is interpreted as a statistical process.

A systems engineer should have a good understanding of **statistical** modeling and **statistical** decision methodology

Measurement issues

- Validity: Faithfully representing the aspect of interest; i.e.: usefully or appropriately represents the feature of an object or system
- Precision: Small variation in repeated measurements
- Accuracy (unbiasedness): Producing the "true value" "on average"

Precision and accuracy

Not Accurate Not Precise

Accurate, Not Precise

Precise, Not Accurate

Accurate and Precise

Statistical thinking

- Statistical methods are used to help us describe and understand variability.
- By variability, we mean that successive observations of a system or phenomenon do not produce exactly the same result.

Are these gears produced exactly the same size?

Sources of Variability

Random variables

- We often model a measurable quantity *X* as a random variable.
- The probability density function is assumed to be known.
 - A common choice is the Gaussian distribution (Central Limit Theorem)

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$$

Estimation of model parameters

- Our purpose is to estimate certain parameters of f(x), (mean, variance) from observation of the samples.
- Observe samples from the distribution:

$$R = \{X_1, X_2, X_3, \dots, X_i, \dots, X_N\}$$

Sample mean: $M = \frac{1}{N} \sum_{i=1}^{N} X_i$ Point estimate of μ
Sample variance: $S^2 = \frac{1}{N-1} \sum_{i=1}^{N} (X_i - M)^2$ Point estimate of σ^2

Examples

Sample (N = 10)	М	S
{55,41,50,44,55,56,48,29,51,66}	49.5	10.01
{60,34,49,43,40,38,53,46,51,46}	46	7.69
{45,54,57,71,36,40,60,46,36,53}	49.8	11.29
{66,57,70,55,69,47,39,48,62,39}	55.2	11.64
{56,44,56,39,51,30,45,55,47,62}	48.5	9.49
{44,27,38,61,49,54,59,29,44,43}	44.8	11.47

Point estimates as random variables

• Sample mean and standard deviation depend on the random samples chosen

 \succ M and S are random variables

Sample mean: $M = \frac{1}{N} \sum_{i=1}^{N} X_i$ $E\{M\} = \mu, \ \sigma_M^2 = \sigma^2 / N$ $f_X(x) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{(x-\mu)^2}{2\sigma^2}\right)$ $f_M(m) = \frac{1}{\sqrt{2\pi\sigma_M}} \exp\left(-\frac{(m-\mu)^2}{2\sigma_M^2}\right)$ 15

Distribution of Sample Mean

For larger sample sizes N the mean estimate is closer to the mean with higher probability.

16

Confidence intervals

We want to determine an interval *I* for the actual mean μ so that $P(\mu \in I) = 1 - \alpha$

$$P(\mu - a \le M \le \mu + a) = \int_{\mu - a}^{\mu + a} f_M(m) dm$$
$$= P(M - a \le \mu \le M + a)$$

17

Confidence intervals

• Given that *X* is a Gaussian random variable with mean μ and variance σ^2 :

 $R: \left\{ X_{1}, X_{2}, X_{3}, \dots, X_{i}, \dots, X_{N} \right\}$ $M = \frac{1}{N} \sum_{i=1}^{N} X_{i}; \quad S^{2} = \frac{1}{N-1} \sum_{i=1}^{N} (X_{i} - M)^{2}$ $Z = \frac{(M-\mu)}{\sigma/\sqrt{N}} \qquad \text{has distribution N(0,1)}$ $T = \frac{(M-\mu)}{S/\sqrt{N}} \qquad \text{has Student's t-distribution}$

Student's t-distribution

This distribution is known as *Student's t-distribution* with *k* degrees of freedom.

The distribution is named after the English statistician W.S. Gosset, who published his research under the pseudonym "Student."

Confidence intervals

$$\begin{aligned} \alpha &= P\Big(-t_{N,\alpha} \leq T \leq t_{N,\alpha}\Big) = \\ P\Big(M - \frac{S}{\sqrt{N}} t_{N,\alpha} \leq \mu \leq M + \frac{S}{\sqrt{N}} t_{N,\alpha}\Big) \end{aligned}$$

20

Confidence intervals

 When we obtain the estimates M and S from the sample set, the actual mean μ will lie in the interval

$$\left[M - \frac{S}{\sqrt{N}} t_{N,\alpha}, M + \frac{S}{\sqrt{N}} t_{N,\alpha}\right]$$

with probability α . This is called a $\alpha \times 100$ percent confidence interval.

• The values for Student's t-distribution are tabulated.

Confidence coefficients of intervals

	Confidence coefficient α			
N	0.90	0.99	0.995	
10	1.8331	3.2498	3.6897	
50	1.6766	2.6800	2.9397	
100	1.6604	2.6264	2.8713	
500	1.6479	2.5857	2.8196	

Example 1: Wire resistance

Ten measurements were made on the resistance of a certain type of wire. Suppose that *M*=10.48 Ω and *S*=1.36 Ω. We want to obtain a confidence interval for μ with confidence coefficient 0.90. From the table

$$N = 10, \ \alpha = 0.9 \qquad \longrightarrow \qquad t_{10,0.9} = 1.83$$

$$\mu \in \left[10.48 - \frac{(1.36)}{\sqrt{10}} (1.83), 10.48 + \frac{(1.36)}{\sqrt{10}} (1.83) \right]$$
$$= \left[9.69, 11.27 \right] \text{ with probability 90\%}$$

Example 2: Robot rolling an object

 You design an actuator system whose purpose is to kick and roll an object. You are interested in estimating the distance the object travels before stopping.

Example 2: Estimating average distance

Approach 1: Take actual measurements with a physically implemented system.

You take 10 measurements and find M=51.3 cm, S=6.4 cm

$$N = 10, \quad \alpha = 0.99 \quad \Longrightarrow \quad t_{10,0.99} = 3.25$$

 μ = Average distance the object travels

$$\mu \in \left[51.3 - \frac{6.4}{\sqrt{10}} (3.25), 51.3 + \frac{(6.4)}{\sqrt{10}} (3.25) \right]$$
$$= \left[44.72, 57.88 \right] \text{ with probability 99\%}$$

Example 2: Estimating average distance

Approach 2: Form a system model and prepare a simulation setting

You simulate with 500 realizations and find M=54.2 cm, S=6.7 cm

$$N = 500, \quad \alpha = 0.99 \implies t_{500,0.99} = 2.58$$

$$\mu = \text{Average distance the object travels}$$

$$\mu \in \left[54.2 - \frac{6.7}{\sqrt{500}} (2.58), \quad 54.2 + \frac{(6.7)}{\sqrt{500}} (2.58) \right]$$

$$= \left[53.42, \quad 54.97 \right] \text{ with probability 99\%}$$

Worst-case analysis

• Say we can estimate the mean and variance with high confidence:

$$M \approx \mu, \quad S \approx \sigma$$

- What about the maximum/minimum values the random variable can realistically take?
 - e.g. the "maximum distance" the ball is likely to travel

Probability inequalities

Example 2: "Maximum distance"

• Assume after many measurements you found:

$$\mu \approx 54.2, \quad \sigma \approx 6.7$$

Apply Chebyshev's inequality (no Gaussian assumption needed):

$$P(|X - 54.2| \ge a) \le \frac{6.7^2}{a^2} = 0.1 \qquad \implies a = 21.2$$

• So with probability at least 90%

$$|X - 54.2| < 21.2$$
 \implies $X < 75.4$

Conclusion

Problem
Model Identification
Design

- Prepare setups/simulations, take measurements, use tools from statistics to
 - Estimate important parameters: Mean, variance, ...
 - Find confidence intervals
 - Take care of typical/worst cases, maximum/minimum parameter values in your design

QUIZ

List some of the important statistical parameters related to the distribution of a random variable.