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Engineering System Analysis 

•  Use observations to qualitatively and quantitatively 
understand a system. 

•  Use mathematics to determine how a set of 
interconnected components behave in response to a 
given input 
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Questions 
1.  What is meant by “understanding a system”? 
•  Predict future outcomes from the system based on 

hypothetical inputs. 

2.  How to formalize this? 
•  By a model that maps input signals to output signals. 

3.  Why is this important? 
•  A system model is a key component in the systems 

engineering design cycle. 

Input Output Model 
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How not to solve a design problem 
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Models 

•  Model: A comprehensible simplified 
description of a real world system  

•  Engineering systems analysis: 
–  Process of using observations to identify a 

model of a system 

•  Modeling a system: 
–  Find correlations or patterns in the 

observed signals. 
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Statistical framework 
•  Measuring real signals is a statistical process: 

–  Observed signals will be noisy  
–  Noise must be included in the modeling process.  
     All modeling is inherently a statistical process. 

–  Models of systems are uncertain approximations of 
the real world. 

–   The modeling error itself is interpreted as a statistical 
process. 

A systems engineer should have a good 
understanding of statistical modeling and 

statistical decision methodology 
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Measurement issues 

•  Validity: Faithfully representing the aspect of 
interest; i.e.: usefully or appropriately 
represents the feature of an object or system 

•  Precision: Small variation in repeated 
measurements 

•  Accuracy (unbiasedness): Producing the 
“true value” “on average” 
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Statistical thinking 

•  Statistical methods are used to help us describe 
and understand variability. 

•  By variability, we mean that successive 
observations of a system or phenomenon do not 
produce exactly the same result. 

Are these gears produced exactly the same size? 

NO! 
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Random variables 

•  We often model a measurable quantity X as a 
random variable. 

•  The probability density function is assumed to be 
known. 
!  A common choice is the Gaussian 

distribution (Central Limit Theorem) 
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Estimation of model parameters 
•  Our purpose is to estimate certain parameters of 

f(x), (mean, variance) from observation of the 
samples. 

•  Observe samples from the distribution: 

Sample mean:  

€ 

M =
1
N

Xi
i=1

N

∑

Sample variance:  

€ 

S2 =
1

N −1
Xi −M( )2

i=1

N

∑

Point estimate of µ  

Point estimate 
of σ2  
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Examples 

Sample (N = 10) M S 

{55,41,50,44,55,56,48,29,51,66} 49.5 10.01 

{60,34,49,43,40,38,53,46,51,46} 46 7.69 

{45,54,57,71,36,40,60,46,36,53} 49.8 11.29 

{66,57,70,55,69,47,39,48,62,39} 55.2 11.64 

{56,44,56,39,51,30,45,55,47,62} 48.5 9.49 

{44,27,38,61,49,54,59,29,44,43} 44.8 11.47 
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Point estimates as random variables 

•  Sample mean and standard deviation   
depend on the random samples chosen  
!  M and S are random variables 

Sample mean:  

€ 

M =
1
N

Xi
i=1

N

∑

€ 

E M{ } = µ, σM
2 =σ 2 /N
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For larger sample 
sizes N the mean 
estimate is closer 
to the mean with 
higher probability. 

Distribution of Sample Mean 
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Confidence intervals 

€ 

P µ − a ≤ M ≤ µ + a( ) = fM m( )dm
µ−a

µ +a

∫

= P M − a ≤ µ ≤ M + a( )

We want to determine an interval I for the 
actual mean µ so that 
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•  Given that X is a Gaussian random 
variable with mean µ and variance σ2: 

  

€ 

R : X1,X2,X3,…,Xi,…,XN{ }

€ 

M =
1
N

Xi
i=1

N

∑ ; S2 =
1

N −1
Xi −M( )2

i=1

N

∑

€ 

Z =
M − µ( )
σ / N

T =
M − µ( )
S / N

has distribution N(0,1) 

has Student’s t-distribution 

Confidence intervals 
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€ 

fT t( ) =
Γ k +1( ) /2[ ]
Γ k /2( ) πk

1+
t 2

k
⎛ 

⎝ 
⎜ 

⎞ 
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⎟ 

− k+1( ) / 2

k = N −1

This distribution is known as Student’s t-distribution 
with k degrees of freedom. 
The distribution is named after the English statistician W.S. Gosset, who 
published his research under the pseudonym “Student.” 
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€ 

α = P −tN ,α ≤ T ≤ tN ,α( ) =

P M −
S
N
tN ,α ≤ µ ≤ M +

S
N
tN ,α
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•  When we obtain the estimates M and S from the 
sample set, the actual mean µ will lie in the 
interval 

€ 

M −
S
N
tN ,α , M +

S
N
tN ,α

⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

 with probability α. This is called a α×100 percent 
confidence interval. 

•  The values for Student’s t-distribution are 
tabulated. 

Confidence intervals 
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N 0.90 0.99 0.995 

10 1.8331 3.2498 3.6897 

50 1.6766 2.6800 2.9397 

100 1.6604 2.6264 2.8713 

500 1.6479 2.5857 2.8196 

Confidence coefficient  𝛼  

Confidence coefficients of intervals 
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Example 1: Wire resistance 

•  Ten measurements were made on the 
resistance of a certain type of wire. Suppose 
that M=10.48 Ω and S=1.36 Ω. We want to 
obtain a confidence interval for µ with 
confidence coefficient 0.90. From the table

€ 

µ∈ 10.48 − 1.36( )
10

1.83( ),10.48 +
1.36( )
10

1.83( )
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

= 9.69,11.27[ ]
€ 

N =10, α = 0.9

with probability 90% 



Example 2: Robot rolling an object 
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•  You design an actuator system whose purpose is to 
kick and roll an object. You are interested in 
estimating the distance the object travels before 
stopping.

X

€ 

fX x( ) =
1
2πσ

exp −
x − µ( )2

2σ 2

⎛ 

⎝ 

⎜ 
⎜ 

⎞ 

⎠ 

⎟ 
⎟ 

Assume Gaussian distribution: 
1.  Estimate the mean distance 
2.  How large can X be? 
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€ 

N =10, α = 0.99

€ 

t10,0.99 = 3.25

€ 

µ = Average distance the object travels 

Approach 1:  Take actual measurements with a physically 
implemented system. 

You take 10 measurements and find M=51.3 cm, S=6.4 cm 

€ 

µ∈ 51.3 − 6.4
10

3.25( ), 51.3+
6.4( )
10

3.25( )
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

= 44.72, 57.88
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ with probability 99% 

Example 2: Estimating average distance 
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Approach 2:  Form a system model and prepare a 
simulation setting 

You simulate with 500 realizations and find M=54.2 cm, 
S=6.7 cm 

€ 

µ = Average distance the object travels 

€ 

µ∈ 54.2 − 6.7
500

2.58( ), 54.2 +
6.7( )
500

2.58( )
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ 

= 53.42, 54.97
⎡ 

⎣ 
⎢ 

⎤ 

⎦ 
⎥ with probability 99% 

€ 

N = 500, α = 0.99

€ 

t500,0.99 = 2.58

Example 2: Estimating average distance 



Worst-case analysis 
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•  Say we can estimate the mean and variance 
with high confidence:

€ 

M ≈ µ, S ≈σ

•  What about the maximum/minimum values the 
random variable can realistically take? 
! e.g. the “maximum distance” the ball is likely 

to travel 



Probability inequalities 
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•  Markov’s inequality: For a random variable X ≥ 0 

€ 

P(X ≥ a) ≤ E[X]
a

•  Chebyshev’s inequality: For a random variable X 

€ 

P( | X − µ | ≥ a) ≤ σX
2

a2



Example 2: “Maximum distance” 
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•  Assume after many measurements you found: 

•  Apply Chebyshev’s inequality (no Gaussian assumption 
needed): 

€ 

µ ≈ 54.2, σ ≈ 6.7

€ 

P( | X − 54.2 | ≥ a) ≤ 6.7
2

a2
= 0.1

For 90% confidence 

€ 

a = 21.2

•  So with probability at least 90% 

€ 

| X − 54.2 | < 21.2

€ 

X < 75.4
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Conclusion 

•  Problem        Model Identification       Design 

•  Prepare setups/simulations, take measurements, 
use tools from statistics to 
–  Estimate important parameters: Mean, variance, … 
–  Find confidence intervals 
–  Take care of typical/worst cases, maximum/minimum 

parameter values in your design 
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QUIZ 

List some of the important statistical parameters 
related to the distribution of a random variable.  


