FUNDAMENTALS OF ENGINEERING DESIGN

1

Problem Definition

- Assessment of Needs
- Define top-level functional requirements
- Define objectives and metrics
- Specify performance requirements
- Identify constraints

-http://www.mrc.uidaho.edu/mrc/people/jff/480/handouts/design_process/
 -Lecture notes on 'Understanding & Applying The Engineering Design Process' by Mark D. Conner, The Engineering Academy at Hoover High School
 -Ralph M. Ford and Chris S. Coulston. Design for Electrical and Computer.

–Ralph M. Ford and Chris S. Coulston, Design for Electrical and Computer Engineers: Theory, concepts and Practice, Mc Graw Hill, 2005.

3

Assessment of Needs

- The aim is not to solve the problem but to understand what the problem is
 - What does this client want?
 - What is the problem that the design is to solve?

Functional Requirements

Specifies a behaviour that a system or subsystem must perform.

- expressed as "doing" statements
- typically involve output based on input

Example

 Design and construct a robot which can compete with a similar robot in pushing egg shaped "balls" along a playfield and place them in "nests" assigned for them, before the opponent.

Example

- Detect start signal
- Detect the egg
- Detect the nest
- Align the robot, the egg and the nest
- Push the egg towards the nest by controlling it
- Place the egg into the nest

Define objectives

- Objectives, are the desired attributes of the design, what the design will "be" and what qualities it will have
- They are often adjectives/adverbs (e.g., fast, low cost)

Objective examples

- Performance related
 - Speed
 - Accuracy
 - Resolution
- Cost
- Ease of use
- Reliability, durability
- Power
 - Voltage levels
 - Battery life

Objective trees

- Make a list of objectives
- Group the relevant objectives
- Form a hierarchical tree structure

Why do we need objectives?

- Objectives allow exploration of the design space to choose among alternative design configurations
- Three design alternatives
 - Design 1: D1
 - Design 2: D2
 - Design 3: D3
- Which one is the best choice according to my objectives?

Evaluation of design alternatives

	F	GC	LDR	Ι	LPC	С	R	Total
	0.12	0.10	0.18	0.24	0.09	0.18	0.09	
D1	8	6	10	4	2	0	2	4.86
	0.96	0.6	1.8	0.96	0.18	0	0.18	
D2	0	6	8	10	8	2	2	5.7
	0.0	0.6	1.44	2.4	0.72	0.36	0.18	
D3	2	8	0	2	6	10	4	4.22
	0.24	0.8	0.0	0.48	0.54	1.8	0.36	

10: Excellent,8: Good, 6: Satis., 4: Av., 2: Unacceptable, 0: Failure

Define objective metrics: Metrics measure how well the objectives are met

Objective Metrics

	Fast	Long Detection range	Robustness to changes in light conditions
10 Excellent	<5 min.	1-2m	Works in the dark and under sunlight
8 Good	5-10	80-100cm	Works in the dark and in the laboratory lighting
6 Satisfactory	10-15	60-80cm	Works under sunlight and in the laboratory lighting
4 Average	15-20 min	40-60cm	Works everywhere in the laboratory
2 Unacceptable	20-30 min.	20-40cm	Works only at some specific locations in the laboratory
0 Failure	>30 min.	0-20cm	Sometimes works at some specific locations in the laboratory

From objectives to requirements

	F	GC	LDR	I	LPC	С	R	Total
	0.12	0.10	0.18	0.24	0.09	0.18	0.09	
D1	8	6	10	4	2	0	2	4.96
	0.96	0.6	1.8	0.96	0.18	0	0.18	4.00
D2	0	6	8	10	8	2	2	
	0.0	0.6	1.44	2.4	0.72	0.36	0.18	
D3	2	8	0	2	6	10	4	4 22
	0.24	0.8	0.0	0.48	0.54	1.8	0.36	4.22

- What happens if you don't accept a design alternative lasting longer than 30 minutes?
- Operation time <30 min becomes your performance requirement

Specify performance requirements

- A requirement specifies a capability or a condition to be satisfied.
 - Expressible as numbers and measures
 - Examples:
 - Capability: Works in the dark and under sunlight
 - Condition: Operation time<30 min.
- Translates needs into terminology that helps us to measure how well we met them
 - It turns the problem statement into a technical, quantified form

Requirement types

• Functional

- Performance : Refers to a requirement that quantitatively defines a system's or part's required capability.
 - Tells us how well the design will perform
- Physical : Specifies the physical characteristics of a system or system part.
 - Weight, size, etc.

A good requirement is:

- Abstract
 - What the system will do, not how it will be implemented
- Unambiguous
- Traceable
 - To the needs and desires of the user
- Verifiable, measurable
 - Are we building the system correctly?
 - Test plan!!!
- Achievable (realistic, feasible)
 - Research, engineering know-how, system modeling

Good requirement examples

- The robot must have an average forward speed of 0.5 feet/sec, a top speed of at least one foot/sec, and the ability to accelerate from standstill to the average speed in under one second
- The robot should place the first egg in the nest within at most 20 min.

Relation between requirements and test plans

- The robot should detect 5kHz sine wave generated by a mobile phone
- What is the test plan?
 - How far will be the mobile phone?
 - What will be the environmental conditions?
- The robot should detect 5kHz sine wave generated by a mobile phone placed 1m from the robot at a signal to noise ratio of 20 dB.

A poor requirement

- The robot must employ IR sensors to sense its external environment and navigate autonomously with a battery life of one hour.
- Better one: The robot must navigate autonomously, with the aid of only landmarks in the specified environment, for a period of at least one hour.

Examples of Poor Requirements

- The computer shall process & display the radar information instantly.
- The ship shall carry enough short range missiles.
- The aircraft shall use stainless steel rivets.
- The power supply output shall be 28 volts.
- The power supply unit shall provide 12 V DC with a load regulation of 1% while the line voltage variation is 220 +/- 20 V AC under all load current regimes and vibration and shock profiles within the temperature range.

Identify constraints

- Restrictions or limitations on a behavior, a value, or some other aspect of performance
- Stated as clearly defined limits
- Often the result of guidelines and standards

Example constraints of egg placing project

- Size of robot, pushing plate, nest
- Markers to detect robot and nest
- Start signal: 5kHz sine wave

System level and subsystem level requirements

System level requirements Proposal

Subsystem level requirements Conceptual design

> Unit level requirements **Detailed** design

System level and subsystem level requirements

- System level requirement The robot should place the first egg in the nest within at most 20 min.
- Concept generation, design alternatives, evaluation of alternatives by using objectives -----> Conceptual Design
- Conceptual Design > Subsystems are defined

Subsystem level and component level requirements

- Subsystem level requirement
 Detection subsystem
 The robot should find the egg within 10 sec after losing control of it
- Detailed design Components are defined

V Diagram

